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Abstract

This document describes work on a prototype Mixed Finite Element Me&dEM) hydrodynamics algorithm in the ARES
code, and its application to a set of standard test problems. This workigatea by the need for improvements to the algorithms
used in the Lagrange hydrodynamics step to make them more robustegielly identifying the outstanding issues with tradi-
tional numerical hydrodynamics algorithms followed by a description efffoposed method and how it may address several of
these longstanding issues. We give a theoretical overview of the @dpdBEEM algorithm as well as a summary of the coding
additions and modifications that were made to add this capability to the ARES tle present results obtained with the new
method on a set of canonical hydrodynamics test problems and dératensignificant improvement in comparison to results
obtained with traditional methods. We conclude with a summary of the issillest fand and motivate the need for continued
research to develop the proposed method into maturity.

1 Introduction and Motivation

This work is motivated primarily by the desire to make the uizal algorithms which are used in solving the equations of
hydrodynamics (namely the inviscid Euler equations) in graagian frame more robust with respect to grid motion. Caalg

is to improve the Lagrangian hydrodynamics algorithms &vpnt spurious grid distortions and more importantly, imelate
artificial symmetry breaking in problems with irregular /morthogonal grids.

Originally, this work was driven by the desire to obtain imped treatment to the so called “hourglass” (a.k.a. chéxeer)
instabilities which are a common plague among traditiotedgered-grid hydrodynamics (SGH) codes. These instakilare
triggered by a point (or delta function) source and occuhathighest spatial frequency supported by the computdtignich
(namely a single zone or node). They do not go away as the grigfined and unless they are damped (or removed) by a post-
processing “filter” step, they have the potential to growheeked as the numerical solution is evolved over time, tiftess
leading to unacceptable Lagrangian grid distortion anchiaxg termination of a calculation. An example of such anahgity
is given in Figure 1. The standard solution to this problertoisounteract the spurious accelerations that these maddsqe
by introducing an “anti-hourglass” force [1]. This simpledefficient method does a reasonable job of keeping thetahilises
in check; but this approach is really just a “fix-up” and does$ address the fundamental source of the instability. Récehe
method of sub-zonal pressures has been introduced to adtiieproblem [2]. During the early stages of this efforg thethod
of sub-zonal pressures was investigated as a potentialdatador improving robustness. It was discovered thatevthils method
does appear to suppress certain forms of hourglass ing&sjiit is not clear whether this method is suppressingalgthysical
modes. Furthermore, it was discovered that this methoddnotres an artificial divergence-free vorticity mode. Whilesiclear
that hourglass instabilities can lead to spurious gridodiitn, it is not always clear that they are the sole causgofisus grid
distortion. It is tempting to attribute any spurious grigtdirtion in a given calculation to “hourglass modes”, makihem the
default scapegoat for a wide variety of mesh instabilitlas; in actuality, there are a variety of sources for such ispigrgrid
distortions when using a traditional SGH method in a typstadck hydrodynamics problem (see Figure 2).
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Figure 1: Example of a “checkerboard” instability in the Figure 2: Example of spurious grid distortion encountered

pressure field and corresponding “hourglass” instability i when applying standard SGH methods to the Noh problem
velocity field; excited by applying a time dependent per- on an initially orthogonal mesh. There are multiple sources
turbation to a single node at the center. Instability exasts of this grid distortion including hourglass instabilities-
highest spatial frequency of the underlying grid irrespect accuracies in the pressure gradient operator and disaretiz
of mesh resolution and is a result of a fundamental instabil- tion of the artificial viscosity term. Each of these errora ca
ity in the discrete representation of velocity, pressuré an amplify each other over time, leading to a rapid tangling of
the spatial differential operators which relate them. the grid.

Perhaps the most outstanding issue with traditional SGHauaist is the need to improve numerical symmetry preservation
in problems where some degree of symmetry is present (elgerispl symmetry), but the underlying computational mesh i
not aligned with the shock flow. It is well known that tradiied SGH methods break down when the underlying computdtiona
mesh is distorted; this limitation is one of the primary mations for the development of Arbitrary Lagrangian-Eidar(ALE)
methods which keep the computational grid as smooth ashgessin a typical SGH Lagrange step, kinematic vector fietdg.(
acceleration, velocity) are computed at mesh nodes due edextion of cell centered thermodynamic variables (e.gspure,
energy, density) [3], [4]. For example, the force acting agiveen mesh node due to the gradient of a pressure field is ciatipu
using a “control volume” finite differencing technique dsigtrated in Figure 3. This simple approach is extremelyieffit, but
is valid only at the center of mass of the control volume. For “well beh&wgitls, the control volume center of mass and the
node to be accelerated are coincident; however, as thegdidtorted, the control volume center of mass and the medé are
no longer coincident. This causes artificial “torque” on tiegle, resulting in spurious, non-physical mesh motion.

The method of artificial viscosity, as originally introdutby [5], is still the most popular method for treating shocaves.
The current state of the art is to use a Van Leer type “monotlimiter”[6] in conjunction with an artificial viscosity tkeep the
artificial diffusion length of the shock front to a minimum iMhpreventing spurious “ringing” (a.k.a. overshoots andershoots).
The application of such monotonicity limiters is closeljated to the use of Riemann solvers to track shock discoititaisu For
1D calculations or cases where the computational grid ifepty aligned with the flow, such methods give very good tssiror
general meshes which are not aligned with the flow (in2Band 3D), such methods are known to cause symmetry breaking (e
the Noh problem run on an initially square mesh as shown inr€i@). It is clear that the artificial viscosity formulatiesthe
biggest (though not the only) culprit in breaking symmetityan shock waves pass over non-aligned grids. Based on roaheri
evidence, the use of monotonic limiters seems to amplifysghemetry breaking for shock waves passing over non-aligmieid
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Figure 3: Schematic depiction of the traditional contrdiwoe discretization of the pressure gradient operator éonguting the
force acting on a node. On a well behaved grid the controlmelgenter of mass is coincident with the node we wish to aatele
(left). However, as the grid is distorted, the control volume eenf mass and nodal coordinate are no longer coincidagttt()

(see for example [7] and [8]). Furthermore, the artificiaogdsity is typically implemented as a scalar term (withsioftpressure)
which is added to the bulk pressure in the hydro equationsahdequent internal energy equations. This approachigsmally
for the special case of non-vortical flows (i.e. itignoresiaa term). The more general case requires a so called fteissosity”
(see for example [9]). Another way of stating this is that &nificial viscous force term involves tHaiv(Grad) operator acting
on the velocity field.

Traditional SGH methods approximate the divergence of tiecity as a simple change in volume with respect to timesThi
approximation is used to compute the change in internalggnafra given zone due to the kinematic work done on it durirgy th
Lagrange step. This approach is referred to &l scheme, since the change in energy during the Lagrangesstepriputed
as the pressurd, multiplied by the change in voluméy. The change in kinetic energy as computed from the disetibiz
of the pressure gradient is not equal and opposite toRtlé based change in internal energy for a given time step, bedhes
discretizations used fdBrad andDiv are not compatible with each other. The error in energy cwasien for these schemes
is therefore bounded bt (the discrete time step) for planax-y) and for 3D &-y-Z) calculations and will converge to zero
under time refinement. For axisymmetricZ) calculations, there is another component to this erroctvig due to the incorrect
assumption that the divergence of the velocity is constaatione (see [8] for more details) and this error wik converge to
zero under time or space refinement. Conservation of totalemical energy is required to guarantee convergence / stemsly
as problem is refined in time and space.

To summarize, the key issues with respect to traditionatdoder SGH methods are:

Inability to calculate accurate pressure gradients orodied meshes.

Inability to preserve symmetry in problems where shock wanapagation is not aligned with the computational mesh.

Presence of high frequency "checkerboard modes” in preqsesulting in "hourglass modes” in the velocity) that lead
instabilities in time dependent calculations.

Inability to conserve total energy (kinetic plus internaljebraically (i.e. to machine precision), especiallyxisgmmetric
coordinates.

We are currently investigating / advocating the use of higleomixed finite element methods for tackling some of theseg |
standing issues. Mixed finite element methods are a progaiernative to traditional staggered grid (finite diffiece, finite
volume based) methods for discretizing the first order gpdtfferential operators in multi-dimensions, namé@yad, Curl and
Div as well as the second order spatial differential opera@nad(Div), Curl(Curl) and Div(Grad). The MFEM excels at



discretizing equations that involve these operators evieervithe underlying grid geometry (i.e. mesh) is very digtrt This
means we can calculate accurate and symmetry preservisgyseegradient operators even on highly distorted grids.alde
feel that the key to removing the checkerboard / hourglastsability lies in the use of atablemixed finite element basis function
pair for discretizing the pressure and velocity (for morestability in FEM, see [10]). It is now well known that the Iiéar
velocity-constant pressure basis (a.k.a. Q1-QO0 on querdl / hexahedral elements, staggered grid hydro) is stabile mixed
finite element pair. Hourglass modes are now known to be dalgéhe inability of the discret&rad operator (which defines
the spatial relationship between velocity and pressureapaure the null space of the continu@nad operator (i.e. the set of all
constants) at the grid level.

There are multiple sets of MFEM basis functions which sgtikE stability condition. From a practical standpoint,réhare
many things we must consider when choosing a mixed finite ei¢toasis pair for hydrodynamics:

e Where are the velocity degrees of freedom defined?
e Where are the pressure degrees of freedom defined?

e What spatial differential operators will we be using?

In a typical hydrodynamics code, all thermodynamic vaeskle.g. pressure, energy, density) are discretized as-pise con-
stant values at zone centers. To remain consistent withuitrerd methods in the ARES code, we would like to keep ourdisc
thermodynamic fields as piece-wise constant zone-centgraudtities. Therefore, in this work, we utilize so calledv&tgence
conforming” orH (Div) mixed methods. In this approach, the pressure is piece-gaisstant in a zone while the velocity is dis-
cretized on mesh faces (edges in 2D) using a divergence reoimig basis set where the degrees of freedom (i.e. the unksjpow
are the normal projections of the velocity on mesh faces. 8ve ldeveloped and implemented both a low order (Raviartyigso
[11]) and a high order (Brezzi-Douglas-Marini [12]) vemiof this H(Div) approach for Lagrangian hydrodynamics. Such
H (Div) methods require the assembly and solution of a global sfiaese system to solve for the velocity unknowns (the normal
projections of the velocity at element interfaces) and tas required the addition of some new software to interfaite thie
HYPRE linear solvers library [13]. The use of &{Div) conforming basis allows us to generate a discrete versichedbrad
operator as a sparse, rectangular matrix which maps ouepigse constant pressure field to the discrete face basedityefield
which automatically has the correct range and null spacée tilanspose of this rectangular matrix is the adjoint ofGnad
operator, namely a discrete version of iz operator (similar to the support operators method of [1F])is natural approach
to discretizingGrad andDiv in a consistent manner allows us to preserve conservatitotalfenergy at every Lagrange step in
contrast to the non-conservative discretizations usedraditional SGH method.

For Lagrangian hydrodynamics, a velocity field must somebexcomputed at nodes in order to move the computational
grid at each discrete time step. THEDiv) MFEM solves for the normal projections of velocity at mesbefs; and once these
are known, we can use the velocity basis functions to ewvaltra velocity field at any point in a given zone. However, by
construction, theH (Div) velocity basis functions only enforce normal continuitytbé velocity across zone interfaces, and so
there is no guarantee that the velocity field at mesh nodébevilnique. This is an unfortunate downside to sH¢bDiv) methods
in the context of Lagrangian hydrodynamics — it means we seade form of “averaging” or interpolation to convert ouréac
based representation of velocity into a node based repagsn The process by which the face based velocity unkscava
computed using ahl (Div) MFEM are naturally free of hourglass modes (i.e. they areagfiorthogonal to the set of discrete
divergence free velocity modes); however, the process bigtwhodal velocity fields are computed is not constrainechin t
manner and therefore some form of hourglass projection fitagris still required.

For treating shock wave propagation, we advocate the toaditapproach of adding a monotonically limited artificieédcosity
term to the Euler equations. We believe that the key to pvasgisymmetry in problems where shock waves propagate gfrou
meshes that are not aligned with the flow lies in the propardiization of this viscous term (and careful treatmentefltmiter
in multi-dimensions) as well as the pressure gradient dperin this work, we consider only the case of a scalar aigificdscosity
(i.e. a scalagwhich is simply added to the bulk pressitén the hydro equations) and show how tHé€Div) MFEM can be used
to make improvements to this traditional approach. Howewveremphasize that this approach is valid only for the speaie of
non-vortical flows (i.e. it ignores a shear term). The moreagal case requires a so called "tensor viscosity” and wéké¢fore
require a discrete version of thziv(Grad) operator acting on the velocity field. Another drawback te ithDiv) approach is



that such an operator is not well defined for this functioncgpa again, this is because the fundamental assumption éfrvgor
in anH(Div) space is that only the normal components of the velocity argituous across element boundariefia(Grad)
operator requires that all components (tangential and abrofi the velocity field be continuous across element botiadaThis
realization along with the previous discussion concertiiggneed of obtaining hourglass-free nodal fields suggeststH (Div)
method is not the most appropriate MFEM basis to use and gragps a different choice of basis functions would yieldneve
better results; however, it is not yet clear which choicénshest for Lagrangian shock hydrodynamics. We will dis¢bissidea

in greater detail at the end of this document in Section 5.

2 Theoretical Discussion

In this section we introduce the set of continuum partiafedéntial equations (PDEs) we are interested in solvingyeig the
inviscid Euler equations in a Lagrangian (a.k.a. co-moyingterial) reference frame. We describe the key propeitiagsthese
equations posses and their connection to the physicalipl@scfrom which they are derived. We begin the discretaatby first
describing what we mean by “Mixed Finite Element Methods.g ¥ést the relevant equations in variational form and apply a
rigorous Galerkin procedure to reduce our continuum equatto a set of semi-discrete (i.e. no time discretizatigretsapplied)
ordinary differential equations (ODES).

2.1 Notational Conventions

Before we begin our discussion of the equations, we intredhe notational conventions that will be used throughoistdbc-
ument. Forcontinuumfields, we will adopt the conventions as outlined in Table 1l.vActor fields will be designated with an
arrow, with individual spatial components denoted withstptsx andy (for 2D).

Notation / Symbol Description

X={x,y} Lagrangian coordinate
V={v,w} Velocity vector field
d={ax,ay} Acceleration vector field
f={fy, fy} Force vector field

p Density (mass/volume)

m Mass

Vv Volume

e Internal energy per mass

P Scalar pressure

KE Kinetic energy

IE Internal energy

E Total energy (kinetic plus internal)
Q Spatial domain

0Q Boundary of spatial domain
f A boundary normal vector

Table 1: Notational conventions used famtinuumvariables

As we introduce the MFEM discretization process and theomotif discretefields, we will use the notation conventions as
outlined in Table 2. For this case, we will ubeld faced letters to denote “arrays” (i.e. matrices and vectors) wheapital
letters will denote matrices and lower case letters willaternvectors. We will use a superscripto designate a discrete time
step. Subscripts will be reserved for indexing spatial gitias. We will adopt the Burton-Caramana-Shashkov notatf [15]
and [16] for describing “nodal” values (subscrigtand “zonal” values (subscript “z"). We also introduce tlegion of a discrete



basis for vector fields (e.g. a discrete velocity basis) civivie will denote asi;. The subscript in this case will be a a “degree of
freedom” (DOF) index, i.e. the number of unique degreeseddiom in the basis function expansion.

Notation / Symbol

Description

At
Q
Wi

T<OWZF S

A discrete unit of time (a.k.a. “time step”)

A discrete volume of space (a.k.a. “zone”

A discrete basis for vector fields

A discrete basis for scalar fields

A superscript denoting a discrete integer time step

A subscript denoting a particular “zonal” value

A subscript denoting a particular point (a.k.a “nodal”)ual
Subscripts denoting “degree of freedom” indices for inn@doicts
An accent denoting definition with respect to a referencedioate system
The Jacobian matrix for zore

The “mass” matrix for zone

The “stiffness” matrix for zone

The “derivative” matrix for zone

The velocity DOF vector for zone

The pressure DOF vector for zome

The global (assembled) “mass” matrix

The global (assembled) “stiffness”

The global (assembled) “derivative” matrix

The global (assembled) velocity DOF vector (array)

The global (assembled) pressure DOF vector (array)

Table 2: Notational conventions used tbscretevariables

2.2 The Euler Equations in a Lagrangian Frame

The equations of hydrodynamics in a Lagrangian (a.k.a. owimg or material) reference frame are described by a sebwf f
unknowns: velocity, densityp, internal energye, and pressur®; and a set of four equations, known as the Euler equations:

Momentum Conservation: pg—tv = -0p 0}
Mass Conservation: }@ = -0V (2)
p ot
. oe =
Energy Conservation: pa = —PO-V 3)
Equation of State: P = EOSp, e (4)

These equations describe the interplay between kinemeatiddhermodynamics for a collection of materials distridslbver a
given spatial domai2. The connection between these two physical processes wea giaterial is the so called Equation of
State (EOS). The EOS is a material response function whitdrmiénes the net pressure exerted by a differential volufree o
certain material as a function of how much mass it contaiissd@nsity) and its internal energy. We define the total masisd

spatial domai to be

mE/Qp (5)

Furthermore, the total kinetic energy in the spatial donfaiis defined as

KE:}/pVV 6)
2Ja
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The total internal energy in the spatial dom&ins defined as

IE = / pe (7)
Q
The total energy contained in the spatial dom@iis thus
E=KE+IE 8

If the spatial domaif2 contains no energy sources (or sinks) and there is no fluxerbgrand/or mass out of the boundary of the
domain,0Q, then the total energy contained@nis a constant for all time

% _

=0 (9)

2.3 The Compatible Discretization Philosophy

Our goal is to solve the continuum equations of (1) - (4) bylaeing the continuum differential operators and fields vahéce
valid for all points in space and time, with discrete anakgwhich are valid on discrete volumes (a.k.a zones) andetiespoints

in time (a.k.a. time steps). If our discretization processansistent and convergent, then our discrete solutidrcanlverge to the
continuum solution in the limit that the discrete volumegsgmpero (i.e. mesh refinement) and the discrete time stepszgo (i.e.
time refinement). The notion of "compatibility” extends tidea of consistency and convergence by adding additiomedtcaints

/ requirements to the numerical discretizations based opasties of the corresponding continuum partial diffel@rgquations
(PDEs). A compatible (a.k.a. “mimetic”) spatial discratibn method is said to “inherit or mimic fundamental prdjesr of
the continuum PDE such as topology, conservation, symeseémd . .. maximum principles [10].” Such methods have prove
highly successful in several fields in computational physiiecluding electromagnetics [17], [18], incompressifidev [19] and
magnetohydrodynamics [20]. The idea is becoming popularimerical shock hydrodynamics. In simple terms, the goal of
compatibility is to reproduce all of the salient continuueatfures of differential equations and their correspondiffgrential
operators (both time and space dependent) in a discrete.9@ng example is energy conservation. The continuum emsae
wish to solve conserve total energy, therefore our subsegliscrete equations should likewise conserve some désoreasure
of total energy. Less obvious examples lie in the discrétimeof first order spatial differential operators lik&rad, Curl andDiv

as well as second order spatial differential operators ss@rad(Div), Curl(Curl) andDiv(Grad). For this case, compatibility
implies that continuum properties such Es< (ﬁf) = 0 for all vector fieldsf must be reproduced by the discrete differential
operators. While seemingly abstract, this property is d&sddar guaranteeing stability and eliminating certaiptsious” modes.

2.4 Introduction to Mixed Finite Element Methods

What do we mean by Mixed Finite Elements? Loosely speaking nathod which uses multiple sets of basis functions (e.g.
bilinear velocity + constant pressure) can be thought of asx@d method. In this context, we can view the traditionalF5G
method as a mixed method (in fact, mixed methods are a rigotaigh order generalization of the staggered-grid contpt
arbitrary unstructured grids). However, there are sevaeradamental properties that a true MFEM satisfies:

e We follow the rigorous definition of a finite element as origliy set forth by Ciarlet [21]. This means we have concrete
definitions for our finite element space (and subsequens basctions), our degrees of freedom, and our element tgyolo
and geometry. For more details on how this process works nactipal setting, see [22].

e Accurate numerical quadrature over zones is key to avoiddtianal crimes.” This means that we perform all of our zone
based integrals using high order quadrature rules. Theegiraf “nodal mass” that is used in traditional SGH methods
is equivalent to mass-lumping, i.e. under integrating tleenent mass matrix and we feel this contributes to spurioigs g
distortion in Lagrangian hydro.



e Galilean invariance is achieved through proper discrétiman arbitrary curvilinear coordinate systems. This meave
build the metric tensor (i.e the Jacobian matrix) directiyoi our discretizations which removes the dependence of our
numerical solution on the regularity of the mesh.

e Improved accuracy and stability is achieved by using higinder methods (e.g. quadratic basis functions for veldcity

¢ In general this means we need to solve sparse linear systesbsin our solution unknowns. This is troubling to somes du
to the computational cost involved in assembling and sglatinear system at each Lagrange hydro time step. However,
for the sake of obtaining improvements in accuracy, we fed justified; certainly at this early stage of development.
Future work will investigate means of reducing this compotaal effort.

2.5 Spatial Discretization

We begin by decomposing the spatial dom@imto a set of non overlapping, discrete volumes called z¢adsa. elements).
The union of these discrete zones forms the computationghpvehich we will denote aQ, and is defined as

6=y, (10)

Note that the computational meéhis a geometrical approximation to the true geometry of thetioaum domairQ. We now
make the very important distinction between zdopologyand geometry The topology of the zone defines its connectivity,
for example triangular zones vs. quadrilateral zones. hip& terms, the topology of a zone is defined by its number @fuam
“vertices” and how they are connected. The geometry of a mdetermined by the locations of these vertices in somedioate
space. For example, we typically consider the case wherelifogete zone$), are quadrilaterals (hexahedrons) formed by
connecting straight lines to the vertices. However, whéngua mixed finite element method, we are not restricted ®¢hbice

— we can use triangles (tetrahedrons). Furthermore, weainestricted to using straight lines, we can readily incogbe curved
surfaces provided we have higher order geometrical inftiongi.e. instead of straight lines connecting two vewicae could
use a quadratic function which passes through three vertsee [17] for specific examples of this idea). The topoldgyuo zone
determines the explicit form of the basis functions we wikusee Section 2.6). The geometry of the zone (i.e. strhig¥,
curved lines, etc . ..) determines the order of the locaitaial (a.k.a. parametric) mapping which defines the Jacoimatrix of
the zone (see Section 2.7).

2.5.1 Discrete Momentum Conservation

We begin our spatial discretization process by applyingreatianal formulation to the momentum conservation ecuatiVe do
this by transforming the momentum equation into a weightaldme integral equation. We multiply (1) by some vector ealu
test functionw and integrate over the finite element mé3io obtain the variational form

o, o
[ o5 w=— [ (@P)-w CEY
G ot ol
Now we perform integration by parts on the right hand sideldf) @nd apply the Gauss divergence theorem to obtain
ov. - Lo
/~( —)~W:/~(D~W)Pfy{~P(w~n) (12)
a6 ot o fle)

whererTis the outward pointing unit normal vector of the surfaée Now we assume a piece wise polynomial representation of
the fieldsv andP over the meslif of the particular form

VR = S vit)w(X) (13)
PR ~ 3 BiOa® (14)
forx € Q,



Figure 4. Schematic depiction of a continuum spatial donfaiand its geometric approximation by means of a finite element
meshQ consisting of a set of discrete quadrilateral volumes, oiezg),.

Note that we have introduced a separation of variables ib#sés function expansions of (13) and (14), where the cofiic of
the expansion (a.k.a. “degrees of freedom” or DOF) depehdamntime while the basis functions depend only on space.

As mentioned in Section 1, we would like the discrete reprg@n of pressure to be a piece-wise constant zone centere
value. For this simple representation, the basis functiggarsion for pressure in (14) takes on the specific form:

P(X,t) = p(t) (15)

Therefore, for a given zon@;, the basis function expansion of pressure is constant icespdow we apply Galerkin's method to
our variational formulation of (12), which means that we ose velocity basis functiong; from (13) as our testing function. If
we test against every basis function in the expansion aratégime boundary intergal term, we obtain following linegstem of
ordinary differential equations (ODES)
J o5y = [ (e (16
g ot Q

Now we apply our piece-wise constant representation fasqune from (15) and pull all terms that are not spatially dejeat out
of the integrals to obtain

0vi I =
aTl ~D(Wi-Wj):IO/JD-Wj) 17
Q Q
For clarity, we prefer to write the linear system of (17) imnts of matrices and vectors as
mIy_pT (18)
a - P

whereM, D,v andp are global matrices and vectors (a.k.a. arrays) which esenalsled over the entire meéhfrom the contri-
butions of each individual zone as

AssembléM;)
Assembl€D,)
Assemblévy)
= Assembl&,)

- < O X
Il



The process of global assembly is analogous to the concépbdél accumulation” that is used in a traditional SGH codere

a guantity at a node is defined to be the sum of contributiams il of the zones which share this node. For the casé¢(Biv)
basis functions (described in Section 2.6) which have uwkisadefined on mesh faces, assembly is simply the processibii wh
a quantity at a face is defined to be the sum of contributicoms fall of the zones which share that face. This process resjtlie
notion of a global face indexing scheme and this is discuss8eéction 3.4.

We define the “mass matrix” for zoreo be
(Mp)ij = 5 PV - ;) (19)

This matrix is symmetric positive definite (SPD) by constime, and has a dimensiow, by Ny, whereN, denotes the number of
coefficients used in the basis function expansion for velaifi (13). We define the so called “derivative” matrix as

(D2)i,j = /Q (O-v;) (20)

This matrix isrectangularwith dimensionN,, by N, whereN, denotes the number of coefficients used in the basis function
expansion for pressure of (14). Since we have already astaimple piece-wise constants for pressure in (15), thisnséaat

Np = 1 and so our derivative “matrix” is technically a vector, g choose to write it in this form for the sake of generalititisT
rectangular derivative matrix is a map between the two discrepresentations of velocity and pressure and is a tiseeesion

of the Div operator. Its adjoint (or transpose) is a discrete versidheGrad operator as seen in (18).

Figure 5: Schematic depiction of the velocity deformati@dfitransforming a zone from one time stefo another ah+ 1 in a
time of At.

In the Lagrangian description of hydrodynamics, our disereest) = 5 2Qz moves or “flows” with the material. This means
that at some timé (denoted by the integem) we have a certain geometrical configuration of mesh elesngetermined by the
Lagrangian coordinateg' (a.k.a vertices). The Lagrangian coordinates at timtetermine the geometry of our zon@§. A
principle goal of the Lagrange hydro step is to computedteelerationgdue to a collection of various forces) which will cause
the material to move a discrete distac&in a discrete amount of timét such that at timé+ At we have a different geometrical
configurationQ}+1; see Figure 5 for a schematic depiction of this process.
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The acceleration is defined as the instantaneous changtitye

ov

=5

We therefore define the velocideformation fieldas
et =90 1 Ata (21)

whereAt is some discrete time step between statasdn+ 1. The acceleration field therefore defines a differential change in
velocity that is used to accelerate a zone from its currenfigorationQ? to a new configuratio®+* in a discrete time stefit.
The deformation field is usually prescribed on the vertidat® mesh, but it is (implicitly) assumed that it can be egteshto the
whole domain. We define the discrete acceleration to be

a

9y
ot
2.5.2 Discrete Mass Conservation

Now we define the concept of “zonal mass”; this is postulabduktthe total mass contained within a discrete volume ele@gn
and is defined by the following integral

m=/ p (22)
Q;

With this definition, the fundamental postulate of the Lagyian description of hydrodynamics can be written as

om; _
=

This implies that the total mass in a discrete volume elerfagr#one) is a constant. Stated another way, no mass entexgothe
boundary of a discrete volume eleméhltregardless of how the geometry of the volume element chaingase. It is important
to point out that this postulate places no restriction on iogvdensity within a zone can vary, i.e. the density (massupr
volume) inside the discrete volume element can be a fundi@pace and time, the only restriction is that it must indégto a
constant mass by means of (23)

0 (23)

To remain consistent with the ARES architecture, we choosgpproximate the density with a function which has a constan
value,p; in each zon&),. In this case, we can simplify (23) and the principle of zamalss conservation implies

n_ Mg

Pz = \Tzn (24)

whereV,' is the volume of the zon@3. This is the same approach that is used in most tradition&l 8@les and is sometimes
referred as “mass conservation by fiat” [15]. The change déisées induced by the deformation fieléFf implies

/Qn+1 prZHl - /Qn przprl (1—|—Atﬁ . Vdef) + O(Atz)

If we apply the principle of zonal mass conservation for tasecof piece-wise constant densities, we get

n+1 n
2 — Pz - _

1 / -
— [ DO-vef ot
AtprzhL:L V7 Jag (&8

Thus, up to arD(At) term, zonal mass conservation approximates the continmass conservation equation of (2)

10p -
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2.5.3 Discrete Energy Conservation
Recall from Section 2.2 the total energy in a given spatiahdim Q at timen is defined as

En:%Anpnvn-vu/annen

The changein kinetic energy during a discrete Lagrange time giépinduced by the acceleration fiefton the current spatial

configurationQ" is
. ef
1( pnvdef.vdefi/ ann«Vn)At/ PnD-(vd +vn)
2 \Jan on On 2

Now, assume that the new internal energy satisfies

p" . vdef+vn
+1 __ 0 M.
="t annlj( 5 )

and the new velocity™! on thenewconfigurationQ™? is computed such that

/Qnﬂ(p””v‘*l) = /Qnm”vdef) et (25)
Then the total energy is conserved
En+1 =k

Thus, the change in kinetic energy frafito ¥+ is exactly compensated by the change in internal energy.rdsepve this on
the next time step, the velocity should be transfered witlhttoducing any new kinetic energy. This can be ensured siynple
(global) scaling of th&*1 vector field onQ"™1.

2.5.4 Discrete Equation of State

The equation of state is a material response function wipeltifes the pressure exerted by a given volume of materiahwh
contains a specified amount of mass and has a specified intaergy per unit mass. The discrete version of the EOS islgimp
a piece-wise constant function of the from

P; =EOSp}, &) (26)

2.6 Mixed Finite Element Basis Functions forH (Div)

Here we introduce the specific form of the basis functions wkeuse for velocity, which we will denote as;, and for pressure,
which we will denote agy. Again, the subscriftis a “degree of freedom” (or DOF) index which spans the totahher of unique
basis functions which make up the basis set. The basis Gnsctire said tgpana particular polynomial space over a discrete
spatial domair©; (a.k.a. zone); this is expressed notationally as

Wi € W(Q,)

@ €P(Qz)

The specific form of the polynomial space and the number ablaactions required to span it are determined by the tapplo
and geometry of the zone as well as the maximum degree of palals we wish to represent exactly with the basis set. For
example, suppose we want to representiaélar functions of one variable over the one dimensional spataia@nQ, = [0,1].
Thetopologyof our zoneQ); is determined by the fact that we have a one dimensional @isfiace defined by two “vertices”. The
geometryof our zoneQ; is determined by the specific locations of these verticesaatd)1. This simple domain can be spanned
by the polynomial basigg+ 01X, i.e. one constant term with a coefficieng, and one linear term with a coefficiemi. The basis

12



functions for this case are very simple, namely 1 and’he degrees of freedom (DOF) are simply the coefficientanda;.
Suppose we wish to approximate some arbitrary scalar fumcif one variabld;,(x), with our basis over the doma®, = [0, 1].
This is accomplished by the following interpolation (a.kasis function expansion)

0~ i) 27)

For this simple example, the coefficients in the expansio@,0OFaq;, are simply the value of the functiohat the end points
of the domainQ,, namelyag(f) = f(0) anda1(f) = f(1). The coefficients of expansion are said to be phgection of the
function f onto thedual spaceof the discrete basis, and in general they are defined by wezightegrals of the functiofi over
the domainQ; (i.e. the degrees of freedom are definedimesar functionalsin a manner completely analogous to computing the
coefficients in a Fourier expansion). This simple examptgeseto illustrate two key concepts we will be using in thistsmn:
first, the notion of aliscrete basisp which spans some polynomial space defined with respect te slisorete spatial domain
such thatg € P(Q;) and second, the notion of degrees of freedom g®pectionoperation (i.e. linear functionals).

As mentioned previously, we would like to keep our discretespure as piece-wise constants at zone centers. In terms of
function spaces, this means our discrete pressure bas&yissimple, just a single constant value is required. Theakegf
freedom for this simple basis is the value of the pressuréuated at the zone center. Having specified a basis for peessu
we now must choose a specific velocity basis, However, in order for the MFEM to be stable, we cannot chdbgebasis
arbitrarily. It must be chosen to satisfy the so called B&htBrezzi stability condition [23]. Simply stated, thelsitiy condition
requires that our velocity basis satisfy the following tela

0-W(Q) = P(Q) (28)

In other words, the basis we choose for velocity must havensteat divergence (since we have restricted ourselvesing us
piece-wise constants for our discrete pressure lggsis

Finally, before we define the basis for velocity, we need tiindethe topology of the discrete spatial domain it will be de#l
on. It is at this point where we make the choice as to what tlerying topology of our discrete zon&s, will be. To be
compatible with the current ARES 2D architecture, we wilboke to work with quadrilateral zones. All quadrilaterahes
(including zones with curved boundaries) in a physical mashtopologically equivalent to a reference quadrilateaie. In
order to make integration over the reference zone as singgp@ssible, we adopt a standard Cartesian coordinate sydtaran
origin at the point0,0) as our reference coordinate system. Throughout the remaafdhis paper, all objects explicitly defined
with respect to this reference coordinate system will beatzd with zhat symbol. LetQ, denote the unit quadrilateral such that

&, = {(%9); 0< (%) <1} (29)

2.6.1 The Raviart-Thomas Basis Functions

We define the explicit form of the so called Raviart-Thomas)(R 1] basis functions for a unit quadrilateral in Table ZheEe
four vector valued basis functions are lineaxiaridy (though not complete for all linear functions) and integielat element
faces, i.e. each basis function has a non-zero normal coemp@atong one and only one face in the reference quadrilatEnés

can be seen visually by the vector plots of the basis funst&town in Figure 6. Most importantly, the basis has a cohstan
divergence.

The degrees of freedom for these basis functions are theal@omponents of the velocity along each of the four faceg€sy
of the quadrilateral, giving us one DOF per face. Note thatehs freedom in choosing the labeling and orientation eatien for
the explicit form of the degrees of freedom (e.g. the origoteof the face normal vector). We have chosen the explicitfional
form of the degrees of freedom as given in Table 4 as our pdaticonvention. There are certain practical concernstihae
determined this choice. A schematic depiction of the the®& and the conventions we have chosen are shown in Figureer. Th
use of these low order RT basis functions in the prototype S8REEM hydro code are specified by the optiarfémorder 4”
(i.e. 4 DOF per zone).
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Basis Function x-component y-component

Wy
W
W3
Wy

= O X O
O O -
|
<>

Table 3: The Raviart-Thomas basis functions on a referenedrijateral

AAAAAAAAAAAAAAAAAAAAAAA

Figure 6: Vector field plots of the four Raviart-Thomas vétpbasis functions on a reference quadrilateral.

DOF ID Functional Form

Vi wi(f) = F(a %) i
Vo vo() = F(e%e) -y
Va3 v3(f) = F(Xe%e) . g
Vs va(F) = F(eX) -y

Table 4: The Raviart-Thomas degrees of freedom on a referguadrilateral

Velocity DOF Pressure DOF

n3
. B
4 3
@ < o
n, v, p
</\ ~
v4 < | — ”z .
n L
¢ ~ ®
X v X

Figure 7: Schematic depiction of the Raviart-Thomas v&joand pressure degrees of freedom.
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2.6.2 The Brezzi-Douglas-Marini Basis Functions

We define the explicit form of the so called Brezzi-Douglaafivii (BDM) [12] basis functions for a unit quadrilateral Tiable

5. These eight vector valued basis functions are quadraticandy (though not complete for all quadratic functions) and also
interpolate at element faces, i.e. each basis function has-@ero normal component along one and only one face irefeesnce
guadrilateral. However, because this is a high-order bagisnow have two DOF per face. We provide visual examplesedeh
high order vector basis functions in Figure 8. Again, théical feature of this basis is that it has a constant divergehis is
accomplished by adding a higher order component to the lol@rdRaviart-Thomas polynomial space that is divergencs fre

an additional “curl” term. This can be seen in the vector badts of Figure 8.

Basis Function x-component y-component

i (R-R)/2  1-Z-§+%
W ~(%-%)/2 i—ﬁy

Wi %%y —(9-9)/2
W %5 (9—)/2
Ws ~%=)/2 Y%

i ()2 5

Wy 1-R-y+% —-(Y-¥%)/2
W y— Xy (§—¥%)/2

Fff’f”””””‘

Ty

PR U R B

7

Figure 8: Vector field plots of the eight BDM velocity basisfiions on a reference quadrilateral.

Again, there is freedom in choosing the labeling and oritamiaconvention for the explicit form of the degrees of freadfor
this basis. We choose to define the degrees of freedom fag theesis functions according the convention proposed by f#]
provide the explicit functional forms in Table 6. The DOF megent the value of the velocity at a given vertex, dotted arte of
the face normals, giving us two DOF per face. A schematicaliepi of the DOF and the conventions we have chosen are shown
in Figure 9. The use of these high order BDM basis functionth@prototype ARES MFEM hydro code are specified by the
option “‘mfemorder 8” (i.e. 8 DOF per zone).
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DOF ID Functional Form

V1 vi(F) = f(%) - Ay
\'%) V2( F) = F(Xz) . ﬁl
Vs va(f) = f(%) - iz
Vg V4( F) = F(Yg) . ﬁz
Vs vs(f) = f(%a) - fig
Ve Vo () = T(%s) - s
\'4 V7( F) = ]?(21) -fig
Vg Vg( F) = ]?(24) : ﬁ4

Table 6: The BDM degrees of freedom on a reference quadilate

Velocity DOF Pressure DOF

Figure 9: Schematic depiction of the BDM velocity and pressiegrees of freedom.

2.7 The Jacobian Matrix and Coordinate System Invariance

The basis functions and degrees of freedom from Sectionr2.@efined only with respect to the reference zneThere exists
a mappingd from the reference zon@, to an actual mesh zor@,. This mapping is functionally written as

2= D(%) (30)

This mapping is referred to as the local-to-global (a.k.e@peetric) mapping and is defined by the geometry of the actesh
zone. For example, if we restrict ourselves to quadrildgecansisting of four vertices connected by straight lirteen this is
equivalent to a bilinear parametric mapping. For the puepad this work, this is exactly the mapping we will assumadsithis
is precisely the type of quadrilateral zone that is perrdittethe ARES code); however, we point out that higher ordeppiregs
exist which permit curved surfaces. For the specific casebilfreear parametric map, we have

P(X) =X (1= R)(1—9) +RXX(1—Y) + XX + Xa (1 - X)y (31)

whereX; denotes the Lagrangian coordinate of veiteWwe define the Jacobian matrix (a.k.a. metric tensor) faritgpping as
0Xi

(J2)ij = 5z (32)
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For the specific case of a bilinear parametric map in 2D, tkellian matrix has the form

o (A9 e—x1) +I06—Xa) (1 §)(Y2— Y1) + I —Xa)
JZ“”‘( (1-R)(xa—x1) + (6 —%2) (1 %)(ya—y1) + X(ys—y2) ) (33)

wherex; andy; denote thex andy components of the Lagrangian coordinate of verté¥ote that the Jacobian matrix igunction
of X andy'and therefore varies inside of a zone.

A key property of theH (Div) basis functions described in section Section 2.6 is thgt‘ihterpolate” at element faces, meaning
that they have a non-zero normal component along one andaoelyace in the reference element. This can be expressee by th
relation R

Vi(Wj) = &i (34)
whered; j is the Kronecker delta function. We need to preserve thipgmy for an arbitrary change of variables (i.e. for an
arbitrary quadrilateral), this is known &wariance The linear functionals which define the velocity degreeeddom involve
dot products with face normals. Surface normal vectorssfiam covariantlyupon a change of variables as

i=1[J] 3, 1A (35)

where|J;| denotes the determinant of the Jacobian matrix. Therefoeder to preserve the invariance property of (34), we must
transform the basis functiong in an inverse manner as

1
3]

I3 Wi (36)

-,

W

This is known as the Piola transformation and it preservesitimal components of; upon an arbitrary change of variables. An
example of this transformation is shown in Figure 10.

Physical Space

Reference Space

Aa A A aaaan

e
-

e
B

e

Figure 10: Example of the Piola transformation applied te ohthe BDM velocity basis functions on a distorted quatiiial.
Note how the basis fiction maintains its property of havingpenmal component along one and only one face of the zone.

2.8 Construction of the Mass Matrix

Here we show the details of how the “mass matrix” of (19) is pated on a zone by zone basis usingl#{®iv) basis functions.
The integral over the actual mesh zddgis transformed to an integral over the reference zZQnby a change of variables as

1 - 1 4
(M) = [ Pali; 30 - (397) 13 37
PN Jz]
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This integral is approximated using Gaussian quadratusesgfecified order. The quadrature rule is first defined in 1D bgta
of k weightsw; and pointsx;, wherek denotes the order of the quadrature rule. Specifically, vee@auss-Lobatto quadrature
where the endpoints of the 1D reference donij@jd] are included in the pointg. This is done to maximize the sparsity of the
mass matrix (since the basis functions are also defined s¢ tha&ints). The one dimensional Gauss-Lobatto weights aimisp
on the interval0, 1] for k= 1,...,5 are defined in Table 7. To generate the corresponding 2Dhitgeiind points for the reference
quadrilateraf)z, we simply take a direct tensor product of the 1D weights avidtp, generating a total & weights and points.
The order of the quadrature rule can be specified in ARES wghaption fnfemquadorder”. We have determined that the
optimal value isk = 3, resulting in 9 quadrature points per zone in the calooatif (37). This is the default value used in the
code.

Order 1

wp=1 X1 =0.5
Order 2

W1 = 1/2 X1 = 0.0

Wo = 1/2 X =1.0
Order 3

w; =1/6 x1=0.0

wo =4/6 X2 =05

W3 = 1/6 X3=1.0
Order 4

W1 = 1/12 X1 = 0.0

wp =5/12 X2 = 0.276393
w3 =5/12 x3 = 0.723607
wy =1/12 X4 =10
Order 5

wi = 0.05 X1 = 0.0

wo = 0.272222 X =0.172673
w3 = 0.355556 x3=0.5
wy = 0.272222 x4 =0.827327
ws = 0.05 x5 =1.0

Table 7: Weights and Points for 1D Gauss-Lobatto Quadr&utes of Order 1 Through 5

We now point out some interesting properties of the “masdtimarhe velocity basis functions; have units oflistancewhile
the velocity degrees of freedomhave units of Itime such that the basis function expansion

Ve ZViV_Vi
7

has the correct units afistancéetime. This means that the “mass” matrix has unitsrafss: distancé. The mass matrix therefore
depends on the current spatial configuration of the mesith@&agrange coordinates) and must therefore change ausyttie
Lagrangian mesh is updated (i.e. at every discrete timg.stéys is in contrast to traditional SGH methods which hagemastant
“mass matrix” at every cycle (i.e. nodal mass). The disckétetic energy in given zon@; is defined as

1
KEZ == EV-ZFMZVZ (38)

and therefore has the correct unitsoéss: velocity?. Note that the discrete kinetic energy of (38) is a directuitization of the
integral relation of (6).
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2.9 Construction of the Derivative Matrix

Here we show the details of how the “derivative matrix” of Y26 computed on a zone by zone basis usingHitBiv) basis
functions. The integral over the actual mesh zéneas again transformed to an integral over the reference £hney a change
of variables as

(©a)ij = [, B4 (39)

This is a simple calculation due to the fact that the divecgeof the basis functionﬁﬁvi is a constant over any zone and can
therefore be pulled from the inside the integral (i.e. thetnix does not need to be recomputed at every time step).

2.10 Semi-Discrete Form of Hydrodynamics Equations

Recall from (18) the global momentum conservation equatiawritten as

0. .1
M—v=D
at P
For the case of BDM basis functiond, is a symmetric positive definite matrix of dimensioN3cesby 2Nfaces V is an array of
dimension Nsaces D is a rectangular matrix of dimensiofyonesby 2Ntacesandp is an array of dimensioM,gnes WhereNzones
denotes the total number of zones in the meshNg.sdenotes the total number of unique faces in the mesh. Thidistaete

kinetic energy in the mesf is therefore given as
1
KE = évT Mv (40)

We assume a piece-wise constant value for the internal gipergunit mass. The discrete energy equation for a given ne

written as
d

mzaez = —pzDyVv, (41)

The total discrete internal energy in the mé3lis therefore given by the sum

IE =% mge,
z

Note that under the assumption of piece-wise constanttilenighis is a discrete analogue of (7). Given these dedimstiwe can
define the following generalized discrete energy consematquation

o1+ 1.0
3 <2v Mv+Zmzez> =35V (EM)V (42)

Therefore, if%M =0 (i.e. the mass matrix does not change over time), we recmreservation of total energy (9) automatically.
However, as we pointed out in Section 2.8, this is not the &@seur MFEM mass matrix (in fact, we argue that this is not the
case forany proper mass matrix on quadrialteral / hexahedral grids)smaie see the fundamental reason why the rescaling of
velocity is required in (25).

2.11 Mesh Motion, Nodal Velocity and Hourglass Modes

Our velocity field lives in the spadd (Div), but in order to move the mesh, we need to somehow obtain daritsefield at mesh
vertices (a.k.a. nodes). One major advantage of havingoi#Xdmphsis functions is that once we have solved the disecneti@mentum
equation of (18), we can express the velocity at any poirttiwia zone using a basis function expansion. In particularceuld
choose to evaluate the velocity at a particular vertex

V(Rp) = ZVi Wi (Xp)
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However, theH (Div) velocity representation only enforces normal continuftyhe velocity field across zone boundaries, so there
is no guarantee that this field will be unique at a given ver@mxe way to overcome this is to apply an averaging technidbe.
simplest case is taking the average of the valugxy) from every zone which shares the vertgx This nodal averaging method
can be specified in ARES with the optionf'emnodemethod 0”. This simple approach has proven to be the most robust and is
the default option.

A more advanced method is known as a “patch recovery” tecienid he basic idea is that we use a local patch of elements
(namely all of the elements that share the given vexighand perform a least squares averaging of the contributmm ach of
these zones to the vert&y. Functionally, this is expressed as

fo= Z Jo, WV
7 Jo,V

whereV is our basis function representation of the velocity gnig some interpolating shape function, such as the standard b

linear shape functions of (31). If we use bi-linear shapefioms along with a simple 4 point quadrature rule, then (é8lces to

simple volume weighted averaging. This nodal averaginghotetan be specified in ARES with the optianfémnodemethod

1”. Finally, if we apply a more accurate 9 point quadraturerube obtain a higher-order averaging. This nodal averagiethod

can be specified in ARES with the optionf'emnodemethod 2”.

(43)

—

vp~4 vp,3
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Figure 11: Schematic depiction of the local patch recoveogess for computing nodal velocity fields
Unfortunately, this averaging does not pay special atentd the hourglass modes since it is effectively taking ld(biv)
represenation of velocity (which does not have hourglasdaspand converting it to a bilinear representation of vigjaat nodes

(which does have hourglass modes). This is depicted in Eigjar Therefore, some form of hourglass suppression isejilired
as a post-processing step. A simple local filter is the folhauw

Vong=Vp— i ((9p-Fiu)Fs + (Vp-Fio i)

Hereh; andh, are the two zonal hourglass modes ghid an appropriately chosen parameter depending on the tepeasnd
zone information.
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Figure 12: Consider a “checkerboard” pressure field on algirgpd (eft). The MFEM solution ofCIP evaluated at multiple
points in a given zone is clearly non-zero as it shouldden{e). However by performing averaging to geP at nodes , the
interior nodal fields are now zeroight).

2.12 Time Integration and the Lagrange Step

For the prototype capability described in this documenthage employed a very simple leap frog time integration mettoo
the Lagrange step. The process for a given MFEM Lagrangeotstep (or cycle) is outlined below:

MPa = DTp"

vaef V' +Ata

voeT = NodalAverage/®®")

XBJrl — 2?) N, vcriJef

V) = ComputeVolum@™)
n+1  _ m;
z Zn+1
def + Vn

eQJrl — @ _ PnDZ T)
PPt = EOS’(p’z‘”,eQ*l)
v = ProjectAndRescal@?®")
Note that the overall sequence is very similar to what isitiaaally done in a typical SGH code [4]. The key differencae:
e Alinear solve is performed to obtain the face based acdseranknowns (analgous to dividing nodal forces by a “nodal
mass”).
¢ A nodal averaging step is performed to compute nodal vsldigitds from the face based velocity representation

e The change in internal energy per zone is computed from tte fased velocity representation (i.e. a discrete verdion o
velocity divergence).

e The transfer of the face based velocity from the mesh at tirt@the newly updated mesh at timet 1 (a remap step)
requires a rescaling to prevent the introduction of new tkinenergy due the change in the mass matrix.

The method is easily adaptable to a more advanced prediotogetor time integration scheme, or any other time maghi
scheme. The results for discrete energy conservation in-geserete form of (42) are valid for a generic time discration
process.
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2.13 Axisymmetric (-z) Formulation

For problems that can be modeled as a body of revolution, weast our equations in axisymmetric form by assuming cyiaadl
coordinates. Consider a three dimensional function ofspafined with respect to a cylindrical coordinate systémn,z). The
function is said be axisymmetric if the following conditibolds true

0
Ef(r,e,z)fo

Thus, our functionf is only spatially varying in the-z plane as depicted in Figure 13. For an axisymmetric probtemjotal
mass in a volumé&) can be computed as follows
m= / p=21m / pr
Q r

This allows us to cast the variational form of the momentumagign which is usually defined as a full volume integral aver
domainQ, as a simplified integral over a “cut” in thez plane (which we denote &9 as follows.

ov »
2Tt/rr(pa)-v*v:2n/rr(D-\Tv)P (44)

r
A
1
|

Figure 13: Schematic depiction of the reduction of an axisytric problem to a surface integral over a “cut” in the plane

For axisymmetric functions, the divergence operator isndefias

Lo 0 0 f
D-f(r,z):a—zfz+afr+?r (45)

We can simply replacewith x andr with y which allows us to write the axisymmetric momentum equagibt) as

o, 0 0 Wy
ZH/I_y(pE) = 2n/ry<axwx+aywy+y> p
TheH (Div) basis functions have a constant divergenceyrspace and so this term can be pulled from the intergal to mbtai

o, 0 0
2n/ry(pg)-w_2n(a—xwx+ a/Wy)/ryPJrZH/rwyP
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This is the correct variational form of the momentum equationder the axisymmetric assumption and this form is coded in
ARES for the option 1fplane 0.” However, there is a fundamental flaw in this formulationedall the stability condition of
(28), which mandates that for the case of piecewise conptassures, the divergence of our velocity basis must alsobstant.
For theH (Div) basis functions we have considered, this is certainly m®b x-y and also in 3Dx-y-z space. However, this isot
true in axisymmetric-z coordinates due to the definition of tBév operator in this particular coordinate system. The fundataie
flaw here lies in the fact that th@iv operator inr-z space of (45) is very different than tidv operator inx-y space. This flaw
will lead to large and unacceptable errors on and near treeadymmetry as shown in Section 4. This is in contrast ta3hed
operator which is functionally equivalent ¥ay and inr-z, which is precisely the reason why the so called Petrovi&Gmda.k.a.
area weighting) scheme is justified in discretizing @rad operator in methods such as [3].

We point out that this trouble in discretizing tB8v operator inr-z is not unique to the MFEM; in traditional SGH methods,
the Div operator is approximated as a simple change in volume wiperet to time for the internal energy update equation, but
this approach is flawed inz coordinates and causes large errors in energy that do notvgg as the mesh is refined in time
or space. The discretization error is simply transferreunfithe momentum equation to the energy equation. We arentlyrre
lacking a finite element basis that is specifically desigmedkisymmetric problems of this type and therefore, angaesh into
this subject is of great importance.

2.14 Atrtificial Viscosity and the Treatment of Shocks

The most popular and straightforward method for treatingckhwaves in a Lagrangian hydrodynamics code is to introcduce
artificial viscosity (i.e. a dissipative) term to the Eul@uations as originally proposed by [5]. Specifically, we addiscous
force term to the momentum equation and a correspondinggmnem to the energy conservation equation to obtain

p%tv = —0P + O-(ulv) (46)
de = = =
Py = POV + (uv):Dv (47)

wherep is an artificial diffusion length scale and : denotes tensmtiaction. Note that we have considered the general case of
a “tensor viscosity” where the viscous force is computechagdivergence of a stress-like tensor computed as the gitaafithe
velocity field. The artificial viscous force term is a vectalfi and we can therefore apply a Helmholtz decompositiorbtain

O (MOV) = O(bouncd-V) — O (sheall x V) (48)
If we ignore the shear term (an assumption which is only vahen (] x V = 0), and define the following scalar value

9= HouJ -V

then we can rewrite the modified momentum and energy equsasisn

ov 5
de >
p5 = —(P+al-v (50)

Note that this is precisely the form of the equations usedaditional SGH codes wich make use of a so called scalarcatifi
viscosity [5], [4].

A modern scalar artificial viscosity has the form
0= p (CrGslAV|(1— W) + c2p|Av*(1 - W?)) (51)
wherec; andc; are dimensionless constants (the optiogikih” and “qquad” respectively in ARES)Cs is the local sound speed

andW is the so called “monotonic limiter”. The goal of the limitsrto act as a shock detector and “switch o#’#£ 0) only in the
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vicinity of strong velocity gradients, while remaining ¢ = 0) when the solution is smoothly varying. The term “monotdni
implies that the limiter is designed to prevent spuriouging (or “overshoots” and “undershoots”). The details oivhguch a
monotonic limiter is constructed in an SGH code can be foar{d]. We point out that the theory for such monotonic limités
traditionally limited to D analysis and as stated in [4], “it is not obvious how to gelimga. . to multiple dimensions.” We feel
that it is precisely this limitation which is responsible the type of spurious grid distortions shown in Figure 2 anted in [8]
and [7]. However, there is currently a body work that is dedotio addressing this issue for the case of advective trangi
and this work may prove useful for improving such monotomaérs for artificial viscosities in multiple dimensions.

The termAv in (51) is known as the “velocity jump” and is defined to be thamge in velocity in a given zone in the direction
normal to the shock front. InL, it is straightforward to define such a jump termfas= dxg—‘x’ wheredx is the width of a zone

and% is the divergence of velocity in[L In multiple dimensions it is not so straightforward to defi®ne common approach is
to define the velocity jump as a zone centered quantity

Av=I10-v (52)

wherel is a characteristic length of the given zone. The questipwlisch length do we use fdf? In ARES, the characteristic
length in D is computed as an average value AX—ﬁAy whereAx andAy are the lengths of the median mesh lines which intersect
at the zone center arfdis the area of the zone. This approach combined with (52) ahda{ithouta limiter (i.eW = 0) is known

as the “bulk viscosity” option in ARES and is specified witke thption “ifqmodel 3.” The trouble with this approach is that

it does not take the shock direction into account, and so fyuadriateral zone with a high aspect ratio, the length Seatlee
same regardless of wether the shock wave is traveling alumghort direction, the long direction or some arbitrarediion in
between.

For the MFEM, it is straightforward to compute the cell ceatktvelocity divergence as the inner product
(ﬁ . \7)2 == D2VZ

However, because this is a cell centered scalar value, & doehave any directional information. To overcome thisttion,
we tried out the simple idea of defining the velocity jump to be

1 dx dy
Av = 5 ((V23 Vig) - i + (V34— V12) - |dy|)
wherey; is value of the velocity evaluated at the mid-point betwdenltagrangian coordinatés andx; of the zone using the
MFEM basis function expansion add anddy are the median zone vectors. We refer to this idea as the fradtibulk viscosity.
We show in Section 4 that this simple idea can lead to imprerés) but we do not feel it is a general robust solution to the
problem of defining artificial viscosities in multiple dim&inons. We feel that the best solution to this problem is tcsiter the
more accurate case of a tensor viscosity coupled with anawegktreatment of the “monotonic limiter” term.

3 Description of Code Additions / Modifications

In this section we give a brief, high level overview of the cifie code additions that were made in order to implement tié&M
hydro capability in ARES. The vast majority of coding was @ddn five main source files located in theay” subdirectory of
the ARES source tree:

e MFEM2D. c — This file contains all of the core routines for computingetased MFEM quantities such as Jacobian matrices,
local to global transformations, mass and derivative roasi Also includes routines for projection operations,atdield
reconstruction and zone based artificial viscosity catauas.

e MFEMLinSys.c — This file contains mesh level (i.e. loops over domain stmgsf) routines for performing global opera-
tions required for a linear solve such as assembling a glolaals matrix, a global right hand side and applying boundary
conditions. Makes use of the HYPRE unstructured solverfaute.
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e MFEMAccel.c — Extracts the solution from the acceleration operatorirsolve and uses it to construct the nodal velocity
field which will accelerate the grid. Also computes anti-fglass forces using various experimental methods.

e MFEMUpdateGrid.c — Applies the acceleration to grid nodes and updates theahgian coordinates.
e MFEMWork.c — Computes the corresponding thermodynamic work done om#sh by the Lagrange step in a conservative

manner.

In addition to these files, there are several other auxikayrce files that were modified to permit use of the new MFEMbiyd
algorithm ares, most notably in thdk/domain. c file for adding new domain fields, but for the sake of brevityl atarity we
have not included these modifications here.

3.1 Zone Specific Routines afFEM2D. c

The bulk of the routines for performing MFEM zone specific @gi®ns as described in the Theoretical discussion of &e&i
are in the fileMFEM2D. c. These routines are called on a zone-by-zone basis, uduaitywithin in a domain-loop. Below are
descriptions of the key routines that are used to compute MiE&antities on a given zone:

MFEM2D_jacobian - Evaluate Jacobian matrix at a point in 2D

MFEM2D_jacobian_inv - Computes the inverse of a given Jacobian matrix

MFEM2D_loc_to_glob - Get the global coordinates of a point in reference
space

MFEM2D_get_quadrule - Computes and returns the quadrature weights and

points for a specified quadrature rule order

MFEM2D_eval_RT_basis - Evaluates the RT basis functions at the specified
quadrature points

MFEM2D_eval_BDM_basis - Evaluates the BDM basis functions at the specified
quadrature points

MFEM2D_get_RT_massmat - Get the local RT mass matrix for a given zone
MFEM2D_get_BDM_massmat - Get the local BDM mass matrix for a given zone

MFEM2D_get_BDM_divmat - Compute the rectangular divergence matrix for a given
zone using the BDM basis functions and Gaussian

quadrature
MFEM2D_project_RT - Project a nodal vector field onto the RT space
MFEM2D_project_BDM - Project a nodal vector field onto the BDM space
MFEM2D_interp - Interpolate a nodal vector field at zone nodes
using the basis functions and a set of degrees of
freedom
MFEM2D_get_face_map - Computes the global IDs of the face degrees of
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freedom for a given zone. Only valid for the specific
case of a single mesh block

MFEM2D_CalcQDivV - Calculates a zone centered scalar artifical viscosity

3.2 Linear System Specific Routines dfFEMLinSys.c

In order to assemble and solve a sparse linear system treftried over the entire mesh, we need mesh level routines floegag
and scattering our local zone based results into a globedtinystem object. In addition, we need routines for comguaind im-
posing boundary conditions as well as retrieving zone baskdion info from the global solution vector. The flEMLinSys.c

contains such routines and is the primary interface betwd®BS and the HYPRE unstructured solver interface (disalssthe
next section). Below are descriptions of the key routined ére used to assemble global linear system quantitieseddied a
linear solve and its post-processing:

MFEMLinSys_Init - A function for initializing the HYPRE matrix data
used for MFEM hydro

MFEMLinSys_SetShared - A function for setting the shared degree of
freedom information for the HYPRE matrix data
(NOTE - this routine is necessary for multi-block
caluclations and requires a global face index,
and is therefore not yet implemented)

MFEMLinSys_AssembleMat - A function for assembling the linear system matrix
for MFEM hydro

MFEMLinSys_AssembleRHS - A function for assembling the linear system right
hand side for MFEM hydro

MFEMLinSys_SetBCs - A function for computing and setting the boundary
conditions for MFEM hydro

MFEMLinSys_Solve - A function for solving the MFEM linear system

MFEMLinSys_NodeAccel - A function for computing the nodal accelerations
from the face based solution vector

MFEMLinSys_Destroy - A function for cleaning memory and data structures
used by HYPRE for MFEM hydro

3.3 TheHYPRE_FEI Solver Routines

The easiest way to interface with the HYPRE linear solvdysly for the case of the MFEM hydro algorithm is through the
so called finite element interface (FEI). All that is reqdite make this interface work on any grid is a zone based “D@Exn
map”. This mapping is simply an enumeration of the global Offces that a given zone contains. Since H(bDiv) MFEM
algorithm has velocity unknowns daces this implies that we need a global face ID for every uniqueefan our mesh. For a
single domain, this mapping is trivial to construct on a féngock, and is the approach that was taken for this prowtque.
However, as pointed out in the next section, a realistic iatldtck (i.e. parallel) calculation will require the notiof global face
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indices. The original HYPREFEI is written in C++, but there is also a C wrapped versiorhid interface in the latest version of
HYPRE (v2.0.0) that is appropriate for use in ARES. Belowdescriptions of the key routines that are useMEEMLinSys.c
to interface with the HYPRE linear solvers library:

HYPRE_FEI_create - Creates and initializes the HYPRE_FEI object
HYPRE_FEI_parameters - Sets linear solver paramters
HYPRE_FEI_initFields - Defines and initializes the fields of the linear
system (i.e. number of DOF per zone etc ...)
HYPRE_FEI_initElemBlock - Initializes the connectivity pattern of

a given element block (requires a zone based
DOF index map)

HYPRE_FEI_initElem - Initializes the connectivity pattern of
a given element (requires a zone based
DOF index map)

HYPRE_FEI_initComplete - Signifies completion of connectivity specification
HYPRE_FEI_sumInElemMatrix - Sums a local zone based matrix into the global
matrix
HYPRE_FEI_sumInElemRHS - Sums a local zone based vector into the global
RHS vector
HYPRE_FEI_loadNodeBCs - Applies boundary conditions to specified boundary

nodes. (NOTE - the name does NOT imply that only
node based DOF can be set)

HYPRE_FEI_loadComplete - Signifies completion of boundary condition
specification
HYPRE_FEI_solve - Launches the linear solver

HYPRE_FEI_getNumBlockActNodes - Used for retrieving a local zone based solution
vector from the global solution vector

HYPRE_FEI_getBlockNodeIDList - Used for retrieving a local zone based solution
vector from the global solution vector

HYPRE_FEI_getBlockNodeSolution - Used for retrieving a local zone based solution
vector from the global solution vector

HYPRE_FEI_resetSystem - Resets the HYPRE_FEI object
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3.4 Need for Global Face Data Structures

The current prototype MFEM hydro capability described iis thocument is limited to single block problems. This is du¢hie
fact that a global face indexing scheme is required in orderse face based DOF in conjunction with the HYPRE linearesslv
library. As mentioned previously, for a single domain, ttmapping is trivial to construct on a single block. However; oltimate
goal is a multi-block (i.e. parallel) calculation and thiglwequire the notion of global face indices. This type oéésindexing
scheme will be useful for many applications, not just theipalar MFEM algorithm as described in this document. Astsut
will be worth wile to pursue development of these featurehimn ARES code.

4 Results on Some Standard Hydrodynamics Test Problems

In this section we review some results obtained using thdyndewveloped MFEM hydro capability in the ARES code on some
standard (or benchmark) hydrodynamics test problems. \Weace results obtained with the new method to those obtaiitéd

the default ARES hydro algorithm, which we will refer to ag tHEMP method [3]. In each case, we point out the beneficial as
well as the undesirable features of the newly developedigttigo. Problems run with thei*fplane 1” option will be referred to
asx-y mode problems while those run with thefplane 0” option will be referred to as-z mode problems.

4.1 The Coggeshall Adiabatic Compression Problem #2

We begin with a variation of a problem originally described[26]; in particular we apply the analytic solution desedbas
problem #2. This problem describes an adiabatic compnegsi® no shock waves generated) in one spatial coordinatd/e
run the problem in 2D cylindrical geometry (i.e<y mode k = 1) on a quarter symmetry polar “ring” mesh with an inner radiu
R = 0.1 and an outer radiuR, = 1.0. We initialize the density, internal energy and velocifyttte problem according to the
solution provided in [26]. For the free parameters giverhia driginal problem definition, we choose the valkes 1,3 = 1 and
po = 1 and obtain the following initial values

3r
vV(r,0) = —gr
p(r,0) = por
er,0) = Z%rz

We use a simple ideal gas equation of state with5/3. Since the problem is adiabatic, there is no need to apphyriicial
viscosity and so for this problem we explicitly turn off alttificial viscosity parameters by applying the optionglin 0.0"

and “gquad 0.0.” This implies that for this test problem, all mesh motiorllwie generated by discrete pressure gradients. This
will allow us to investigate the differences between the MWHliscrete acceleration equation and the traditional HEMBte@ach.

We apply a random perturbation to a subset of the interiotrnmegles. In addition to the radial surfacerat R;, we keep the
next level of radial nodes unperturbed, leaving a one zoiok ting of unperturbed mesh nodes. The initial mesh, presand
velocity of the problem are shown in Figure 14 and Figure 1% auply “wall” boundary conditions (i.ev- i = 0) to the two
symmetry planes and we leave the inner and outer radialcasfdree”. We let the problem run for a total physical time085
time units with a fixed time step, and run for a total of 600 tisteps. This generates a roughly 10-fold radial compregsitime
initial mesh. In Figure 16 we show a close up of the computationesh the final time step using the default HEMP based hydro
algorithm. Note that the originally unperturbed radialfages display a great deal of distortion, breaking the tajimmmetry

of the problem. This is due to the breakdown of the HEMP giratdigerator for highly distorted grids as depicted in Fig8re
The errors introduced by this breakdown in grid accelerasice relatively small, but the cumulative effect of thisoetwver many
cycles can lead to a drastic breakdown in symmetry as shoWwigime 16. In Figure 17 we show a close up of the computational
mesh at the final time step using the new MFEM hydro algoritiNote that the originally unperturbed radial surfaces remai
unperturbed, thus preserving the radial symmetry of thélpra even on a randomly distorted mesh.
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Figure 14: Initial polar “ring” mesh with a random pertur- Figure 15: Close-up view of initial mesh. Note how first
bation applied to a subset of the interior mesh nodes, ini- two radial sets of nodes are left unperturbed.
tialized with an analytic pressure and a radial velocitydfiel
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Figure 16: Close-up view of final mesh after 600 cycles Figure 17: Close-up view of final mesh after 600 cycles us-

using standard HEMP hydro algorithm. Note how the ini- ing new MFEM hydro algorithm. Note how the initially un-

tially unperturbed inner ring is now highly distorted, bkea perturbed inner ring maintains its radial symmetry even af-

ing the radial symmetry of the problem. ter a roughly 10-fold compression on a randomly distorted
mesh.
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4.2 The Cylindrical (x-y) Sedov Problem

Here we investigate the Sedov [27] explosion test problemlanarx-y mode. The problem consists of an ideal gas-(1.4)

with a delta function source of internal energy depositeithatorigin. The sudden release of the energy will create garmding
shock wave, converting the initial internal energy intoekin energy over time. Total energy should be conserved fdinze.

We run the problem on a quarter symmetry 60 by 60 zoned Cartébiox” mesh. The delta function source is approximated
by setting the internal energy per mass variable in the caroee to a large value such that the total integrated energythe
problem domain is EU; however, since we are only meshing a quarter of the entineado, we need to scale this number by a
factor of 1/4. With this much initial energy, the expanding shock waveudth arrive at a radial distance o= 1 at timet = 1. For

this problem we use the default scalar monotonic artificisdesity, “ifqmodel 1” with“qlin 0.5” and “qquad 0.6666667"

in conjunction with the new MFEM hydro algorithm. In Figur® tve plot the pressure along with the Lagrangian mesh of the
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Figure 18: Snapshot of pressure and Lagrangian mesh at  Figure 19: Line-out of pressure at 45 degrees. Note how
final time step using the MFEM hydro algorithm. shock front is in correct location.

problem domain at the final time step. In Figure 19 we plot ae4out” of the pressure along the 45 degree line. Note tleat th
shock front is very sharp (minimal diffusion caused by thalgcmonotonic artificial viscosity) and the shock locatisicorrect.

In Figure 20 we plot the kinetic, internal and total energies function of time on a log scale in time. Because of themély
large pressure gradient in early time (due to the delta fananergy source), the CFL [28] limited time step is extrgnsenall

at early times, thus a log scale is appropriate for viewirgdiznamics at early time. Note how total energy is conserxadtly

as the initial internal energy is converted to kinetic eyesger time. In Figure 21, we compare the total energy as cdeaply
the new MFEM hydro algorithm in comparison to the original ME algorithm. Note that total energy is not conserved for the
HEMP algorithm (due to the incompatibility of tHedV based internal energy equation with the HEMP gradient apetsed in
the momentum equation.)

4.3 The Spherical (-2) Sedov Problem

Here we investigate the Sedov explosion test problem inrgdie-z mode. The purpose of this example is to illustrate the issues
with the MFEM and HEMP formulations in-z coordinates as discussed in Section 2.13. The problem is am@alized with a
delta function source of energy, the difference this timiadpéhat our problem domain is now a sphere.
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Figure 20: Kinetic, internal and total energies as a fumctio
of time on a log scale using the new MFEM hydro algo-
rithm for the cylindricalx-y Sedov problem.
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Figure 21: Comparison of total energy as a function of
time between the traditional HEMP algorithm and the new
MFEM algorithm. Note how the MFEM algorithm con-
serves energy exactly for all time while the HEMP algo-
rithm loses about 0.06% total energy.

Figure 22: Snapshot of density and Lagrangian mesh at fimal step using the MFEM hydro algorithm ire mode. Note the
aberration in the density and mesh along ztaxis near the shock front.
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In Figure 22 we plot the Lagrangian mesh along with the dgraithe final time step using the MFEM hydro algorithm in
r-zmode. Note the “aberration” in density that appears aloegtaxis in both the mesh and density. This aberration is most
noticeable at the shock front. This is caused by the fundéahémathematical) error of using a basis defined in plananggry
on a problem in axial geometry as discussed in Section 2.88 HEMP algorithm does not have this issue because it fotsrila
the Grad operator in planar coordinates. However, the HEMP algoritises thelV approximation for théiv operator which
leads to large errors in total energy. In Figure 23 we plotdihetic, internal and total energies as a function of timexdog scale
using the MFEM hydro algorithm. Again, note how total eneigigonserved exactly as the initial internal energy is caek
to kinetic energy over time. In Figure 24, we compare theltetergy as computed by the new MFEM hydro algorithm in
comparison to the original HEMP algorithm. Note the largegd roughly 10% in total energy. Again, this is due to thedarrect
discretization of thediv operator inr-z coordinates that is used in the HEMP algorithm. It is impatrta point out that such a
large, artificial gain in total energy will affect the speddite shock wave, causing it to overshoot the final locatioa Bignificant
amount.
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Figure 23: Kinetic, internal and total energies as a fumctio Figure 24: Comparison of total energy as a function of
of time on a log scale using the new MFEM hydro algo- time between the traditional HEMP algorithm and the new
rithm for the sphericat-z Sedov problem. MFEM algorithm. Note how the MFEM algorithm con-
serves energy exactly for all time while the HEMP algo-
rithm gains about 10% total energy.

4.4 The Cylindrical (x-y) Noh Problem

Here we investigate the Noh [29] implosion test problem. phablem consists of an ideal gas= 5/3) with a radially directed
initial velocity, V(r,0) = —f. This generates a “stagnation” shock wave which propagatally outward from the origin with a
constant speed such that at titme 0.6 the shock front should be at a radial locatiorr ef 0.2. Conceptually the opposite of the
Sedov explosion test, this test converts initial kinetiergly into internal energy over time, while conserving taaérgy. We run
the problem on a quarter symmetry Cartesian “box” mesh waitiiaily uniform 40 by 40 zoning. In this example we use thevne
MFEM hydro algorithm in conjunction with the modified “bullstalar artificial viscosity that was discussed in Sectidd 2nd
compare to results obtained using the standard HEMP atgoiitt conjunction with the standard “bulk” scalar artificiaécosity,
namely “ifgqmodel 3”with“qlin 0.25"and “qquad 2.0."

In Figure 25 we plot the density and Lagrangian mesh at thétiima step obtained with the standard HEMP algorithm. In
Figure 26 we plot the density and Lagrangian mesh at the fimal $tep obtained with the new MFEM algorithm. Both plots use
an identical color scale. Note how the post shock densityusimmore uniform while the “wall heating” and mesh distantis
less significant for the MFEM case. Note also the presencabffrequency “ringing” along the shock front for the HEMPsea
In Figure 27 we plot a “line-out” of the density along the 4= line. The analytic value of the post-shock density khba
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Figure 25: Snapshot of density and Lagrangian mesh at  Figure 26: Snapshot of density and Lagrangian mesh at
final time step using the standard HEMP hydro algorithm final time step using the new MFEM hydro algorithm for
for the cylindrical Noh problem. the cylindrical Noh problem.

p = 16 for the cylindrical Noh problem. Note how the MFEM ressltioser to the correct value of 16 and that spurious “ringJing
at the shock front is greatly reduced.

In Figure 28 we plot the kinetic, internal and total energies function of time on a log scale using the MFEM hydro atpari
Again, note how total energy is conserved exactly as thalkinetic energy is converted to internal energy over tinmeFigure
29, we compare the total energy as computed by the new MFENbaldorithm in comparison to the original HEMP algorithm.
Note the small gain of roughly 0.01% in total energy.

4.5 The Planar {-y) Saltzmann Piston Problem

The Saltzman piston is a 1D shock tube problem run on a déstantesh. It is designed to test a code’s ability to propadaieks
waves along a grid not aligned with the wave. A constant vglas applied to the boundary nodes at one end of the problem
domain for all time, simulating a piston being pushed by aemral energy source. This will generate a shock wave thailgh
only travel in thex-direction at a constant speed. The initial mesh used fart#st is shown in Figure 30. We apply “wall”
boundary conditions (i.Z- A = 0) to the two symmetry planes awt= 0 and aty = 0.1, and a “fixed” boundary conditioiv & 0)

to the end of the piston at= 1.

In this example we use the new MFEM hydro algorithm in confiomcwith the modified “bulk” scalar artificial viscosity tha
was discussed in Section 2.14 as well as the high order nedahstruction option,nffemnodemethod 2.” It was discovered
that the best results could be obtained when using this hidéreeconstruction method; however, it is discomfortihgttthis
method does not universally generate better results fmfahie test problems. In Figure 31 we plot the density and &agian
mesh at timé = 0.7. At this point in time, the post shock density should haveifoam value ofp = 4. In Figure 31 we plot the
density and Lagrangian mesh at tilne 0.8 where the initial shock wave has bounced off of the fixed aitl= 1 and reversed
its propagation direction. At this point in time, the posbsk density should have a uniform valuem# 10.
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Figure 27: Line-out of density at 45 degrees for both the HEAMEB MFEM results. Note how the MFEM result is closer to the
correct post-shock density of 16.
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Figure 28: Kinetic, internal and total energies as a func- Figure 29: Comparison of total energy as a function time
tion of time using the new MFEM hydro algorithm for the between the traditional HEMP algorithm and the new
cylindrical x-y Noh problem. MFEM algorithm. Note how the MFEM algorithm con-

serves energy exactly for all time while the HEMP algo-
rithm gains about 0.01% total energy.
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Figure 30: Initial mesh used for the Saltzman piston test.
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Figure 31: Snapshot of density and Lagrangian mesh for Figure 32: Snapshot of density and Lagrangian mesh for
the Saltzman piston problem at tirhe- 0.7 using the new the Saltzman piston problem at tirhe- 0.8 using the new
MFEM hydro algorithm. MFEM hydro algorithm.

5 Conclusions and Future Work

In summary, the particulad (Div) MFEM hydrodynamics algorithm presented in this documerst $mme very attractive and
promising features. We have shown that accurate pressadiegits can be computed even on distorted grids and that exac
energy conservation is possible by discretizing Bie and Grad operators in a compatible manner. We have identified the
fundamental source of hourglass modes as the inability és@eteGrad operator to faithfully reproduce the correct null space
of the continuunGrad operator (i.e. there exist non-constant “checkerboardsgure fields for whichIP = 0 in a discrete sense)
and that this is a fundamental problem of traditional SGHfialations which use bi-linear representations of veloaitynesh
nodes and piece-wise constant pressures at zone centetfmwd/shown that the MFEM hydro algorithm in combination véth
simple modification to the standard bulk artificial viscggifin yield significant improvements in some standard shgdkdtest
problems.

However, the currenH(Div) MFEM hydro algorithm has some limitations that require liert investigation. Théd (Div)
MFEM discreteGrad operator does have the correct range and null spaces asittawwan counterpart, but this only provides
the normal components of the velocity at mesh faces. In daenove the vertices of the grid during the Lagrange step, we
have been forced to develop a nodal averaging process wbislers ourH (Div) velocity representation into a nodal velocity.
Unfortunately, this process is susceptible to hourglasdeaas shown in Figure 12. As shown in Section 2.14, the atific
viscosity really needs to be treated as a tensor and not jsistge scalar quantity. Calculating the viscous force @edue to
this tensor in multiple dimensions requires a discreteivarsf theDiv(Grad) operator for vector fields. As shown in (48), this
operator involves both Biv andCurl. TheH (Div) basis functions have only a well defined divergence (thissestially the
definition of anH (Div) basis) and not a well defin&zurl, and are therefore not suitable for defining such a difféaénperator.

These drawbacks suggest that a different choice of MFEMsifasctions may be the best solution. We believe that useeafdh
called Taylor-Hood (a.k.@2 — Q1 elements) may be a better choice. These basis functiomsstable, high order generalization
of the unstableQl — Q0 elements. These elements permit a discretization oDikiéGrad) operator and allow for a natural
representation of velocity at mesh vertices. Furthermaith the right choice of quadrature points, the mass matixsiich a
basis can be made diagonal without sacrificing accuracy, riimoving the need for a global linear solve at every Lageeastgp.
They key obstacle at this point is that this basis requireiglagn order representation for pressure, possibly at medlesiand is
not yet clear how to make this work for Lagrange shock hydnaagics. Future research into this method should yield sane v
exciting results.
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Regardless of the drawbacks imposed by the particular ehafi@anH (Div) conforming MFEM basis, a general MFEM ap-
proach to Lagrangian hydrodynamics offers several addifiadvantages that have not been explored in this work, lyame
e Method is naturally valid on unstructured grids
e Method is valid for triangular / tetrahedral elements
e Method is readily extendable to elements with curvilineantdaries
These advantages will be explored as the current methodvidapeed into maturity. In addition to this, we need to coesid
the general case of an arbitrary Lagrangian-Eulerian (Atligretization and formulate new methods for transporvéation)

of state variables during the remap phase; and we need tadeoribe case of materials with strength (i.e. full streswste
calculations).

There is much work to be done, but we feel the time is right t&ereaconcerted effort to explore and develop advanced method

for numerical hydrodynamics. To summarize, we feel theofwihg areas warrant further investigation:

e Use of Taylor-Hood elements (and similar variants) for laaggian shock hydrodynamics

e Development of a new basis specifically for axisymmatsizformulation

e Formulation of tensor viscosity in multi-dimensions

e Improved treatment of monotonic limiters in multi-dimemss and unstructured grids

e Use of curvilinear surface elements in Lagrangian shockdngdlculations

e Exploration of potential improvements on unstructuredigrtising MFEM framework

¢ Improved time integration methods combined with formabgity analysis
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